Energia Renovable

Por Un Mundo Más Sano!

Translate

viernes, 14 de septiembre de 2012

Secador Solar

       MANUAL DE COSTRUCCIÓN Y OPERACIÓN DE UNA SECADORA SOLAR
 Los dos elementos básicos de una secadora solar son: el colector, donde la radiación calienta el aire y la cámara de secado, donde el producto es deshidratado por el aire que pasa. Estos elementos pueden diseñarse de diferentes formas para integrarse a diferentes equipos de secado solar. 
                  Tipos de Circulación
             El aire circula dentro del secador con el fin de eliminar la humedad evaporada del producto. Esta circulación se logra por dos métodos: circulación forzada y por convección natural. 
         Circulación forzada: El aire es movido por un ventilador que consume energía mecánica o eléctrica. Este tipo de circulación facilita el diseño en el caso de los equipos de tamaño grande, además de facilitar el control del proceso de secado. Usando este tipo de circulación se pueden obtener velocidades de circulación de aire entre 0.5 y 1 m/s. La principal desventaja de la circulación forzada es el hecho de que se debe disponer de una fuente de energía eléctrica.                                         
          Circulación por convección natural: El aire es movido por las diferencias de temperatura entre las distintas partes del equipo, que promueven la convección térmica del aire. Este tipo de circulación se hace más difícil de incorporar con equipos grandes. Para equipos pequeños o medianos se pueden lograr velocidades de aire de 0.4 a 1 m/s al interior de la cámara, pero en equipos grandes esta velocidad no sobrepasa los 0.1a 0.3 m/s. 
                                    Tipos de Secadores Solares: 
              Indirecto: El colector y la cámara de secado están separados. El aire es calentado en el colector y la radiación no incide sobre el producto colocado en la cámara de secado. La cámara de secado no permite la entrada de la radiación solar. Este secador es esencialmente un secador convectivo convencional sobre el cual el sol actúa como fuente energética. Los secadores directos difieren de los indirectos en la transmisión de calor y la separación de vapor. A continuación se dan varias características de operación que definen a este tipo de secadores. 
• Los secadores indirectos que utilizan fluidos de condensación como medio de calentamiento son, en general, económicos desde el punto de vista del consumo de calor, ya que suministran calor sólo de acuerdo con la demanda hecha por el material que sé esta secando.
 • El calor se transfiere al material húmedo por conducción a través de una pared de retención de sólidos, casi siempre de naturaleza metálica. 
 • Las temperaturas de superficie pueden variar desde niveles inferiores al de congelación, hasta mayores de 550°C, en el caso de secadores indirectos calentados por medio de productos de combustión.
 • Su funcionamiento se caracteriza por algún método de agitación para aumentar el contacto entre el material húmedo y la superficie metálica caliente, así como para efectuar un cambio continuo de material húmedo en la superficie caliente. La naturaleza de dicho contacto determina la velocidad de secado total de los secadores indirectos. Los materiales granulares pesados dan mayor coeficiente de transferencia de calor de contacto que los materiales sólidos voluminosos.

 Directo: En este tipo de secador, el colector y la cámara de secado, pueden juntarse, en cuyo caso la cámara que contiene el producto también cumple la función de colector recibiendo la radiación solar. En los secadores solares directos la radiación solar es absorbida por el propio producto, resultando más efectivo el aprovechamiento de la energía para producir la evaporación del agua. Esto se debe a que la presión de vapor en la superficie del producto crece por la absorción de radiación solar. Por lo tanto el gradiente de presiones de vapor entre producto y aire se hace mayor y se acelera el secado. La combinación de colector y cámara en una sola unidad puede ser más económica en muchos casos, especialmente en los secadores de menor tamaño. Este tipo de secadores es casi siempre con circulación de aire por convección natural. Esto hace que a veces el control del proceso sea poco confiable. Para algunos productos la acción de la radiación solar puede destruir algún compuesto orgánico que lo compone y que tiene interés comercial. Las características generales de operación de los secadores directos son: 
 • El agente de secado puede ser aire calentado por vapor, gases de combustión, gas inerte calentado (nitrógeno por ejemplo), o vapor de agua sobrecalentado. 
 • El secado se efectúa por transferencia de calor por convección entre los gases calientes y el sólido mojado, en donde el flujo de gases extrae el líquido vaporizado y separa el vapor. 
 • Un secador directo consume más combustible por kilogramo de agua evaporada, mientras más bajo sea el contenido de humedad. 
 • La eficiencia mejora al aumentarse la temperatura del gas de entrada a una temperatura de salida constante. 

 Mixto: Son aquellos donde la colección de radiación se realiza tanto en el colector solar previo a la cámara de secado como en la misma cámara de secado. El Secador solar mixto presenta varias ventajas; en primer lugar el control del proceso es más simple (sobre todo en el caso de secadores con circulación forzada de aire). Es fácil de integrar una fuente auxiliar de energía para construir un sistema híbrido. El tener una cámara de secado separada de los colectores facilita la manipulación del producto y las labores de carga y descarga. Dado que la cámara no permite la entrada de la radiación solar, este sistema permite secar en forma conveniente productos que se puedan dañar o perder su calidad de aspecto por una exposición directa al sol. Una desventaja de este tipo de secadores es el hecho de que al añadir el colector previo a la cámara para recolectar energía solar, el tamaño del equipo y sus costos aumentan. Una segunda desventaja es que para evaporar la misma cantidad de agua se necesita mover más kilogramos de aire a mayor temperatura que en el caso de los secadores directos. 
                                 Forma de Operación
               La forma de operar un secador da lugar a dos alternativas: 
 Secado en tandas: El producto es cargado en una sola tanda y la misma no se retira hasta que esté completamente seca. Todo el producto dentro del secador va pasando de un estado húmedo a un estado seco en forma paulatina. Permite un diseño más sencillo del proceso de carga y movimiento del producto dentro del equipo, por lo que resulta apropiado en secadores pequeños y medianos.
 Secado continuo: El producto se va cargando y descargando en tandas parciales. Dentro del mismo secador se encuentra una parte de producto húmedo y otra casi seca. El período entre cargas de las tandas varía de acuerdo al diseño. En algunos casos la carga y descarga parcial se realiza una vez por día. En otros casos se puede llevar a cabo varias veces en el mismo día. Estos secadores pueden ser de convección natural o forzada. 
                     Capacidad de Producción.
 La capacidad de producción se define con relación al peso del producto fresco total que se alimenta para ser secado. En general, cada tipo de secador solar tiene un funcionamiento más apropiado en cierto rango de capacidad de producción. Enseguida se describen las características de algunos tipos de secadores más comunes según la capacidad de su producción.
                                 Tiempos de Secado
 En el tiempo total de secado deben de considerarse tres períodos distintos:
            Primer Período: Es este período de calentamiento inicial del producto en el cual la velocidad de secado en función del tiempo aumenta. 
            Segundo Período: Es este lapso la velocidad de secado permanece constante y es independiente del sólido, de modo que para las mismas condiciones externas, el proceso es similar al que se daría en la superficie de una masa de agua. 
           Tercer Período: Una vez que la humedad superficial ha sido eliminada, la humedad interna remanente comienza a ser eliminada pero, en consecuencia, la velocidad del secado decrece a medida que se va perdiendo humedad interna por evaporación en la superficie. Las duraciones de los períodos de secado varían de un secador a otro y de un producto a otro, de tal forma que es en la práctica donde se fijan estos valores. Al disminuir la cantidad de humedad a evaporar también disminuye el tiempo de secado; otra opción de disminuir el tiempo de secado es la de aumentar la energía térmica, para que aumente la temperatura del aire y así aumente la tasa de transferencia del calor necesario para evaporar la humedad del producto. Si se quiere disminuir el tiempo de secado se debe tener cuidado de que la temperatura del aire no sea demasiado alta, ya que puede ocasionar daños al producto a secar.
                      Contenido de Humedad de un Producto
 Contenido de Humedad: Es la cantidad de agua evaporable existente en un producto y se expresa con relación a su masa total o a su masa seca (esto es sin contar la masa de agua evaporable que contiene). Existen diferentes métodos para medir el contenido de humedad de un producto. La determinación directa del contenido de humedad implica medir la masa del producto y la masa seca correspondiente. Para medir la masa seca de un alimento generalmente se le somete a 104°C, hasta que llegue a un peso constante. En el caso de productos que se descomponen por efecto de altas temperaturas, éstos se secan poniéndolos en una estufa de vacío a 60°C y a una presión mayor de 700 Pa, hasta que lleguen a un peso constante. 
 Contenido de Humedad de Equilibrio: Una variable importante en el secado de materiales es la humedad del aire en contacto con un sólido de determinada humedad. Supóngase que a un sólido húmedo se le aplica una corriente de aire con humedad y temperatura constantes. Supóngase, también, que se usa una gran cantidad de aire, por lo que las condiciones permanecen invariables. Después de haber expuesto el sólido por tiempo suficiente para alcanzar el equilibrio, llegará un momento en que éste tendrá un contenido de humedad definido. A este valor se le conoce como contenido de humedad de equilibrio del material, bajo las condiciones específicas de humedad y temperatura del aire. Si el material contiene más humedad que su valor de equilibrio en contacto con un gas a determinada humedad y temperatura, se secará hasta alcanzar su valor de equilibrio. Si el material contiene menos humedad que su valor de equilibrio, absorberá agua hasta alcanzar dicho valor de equilibrio.
 Humedad Inicial Óptima: Es de particular interés el efecto que ejerce el ambiente sobre el producto a secar durante el almacenamiento previo al secado; si el producto es almacenado en un ambiente húmedo, se recomienda acomodarlo de tal manera que se propicie un secado natural, para que favorezca un nivel óptimo de humedad inicial. Existen diferentes métodos de secado alternativos, los que pueden disminuir el contenido de humedad de un producto, antes de introducirlo a un secador de convección. Estos métodos pueden ser de separación mecánica, e incluso por otro tipo de secador térmico, ya que comparativamente con la energía gastada por un secador convectivo, esta medida redunda en un ahorro. 
 Humedad Final Óptima: El secado puede considerarse como exitoso cuando el contenido de humedad del sólido que sale del secador se ha reducido lo suficiente para que pueda pasar a otros procesos o para que pueda salir a la venta inmediatamente. La importancia del contenido de humedad con el uso eficiente de la energía, no puede pasar desapercibido. Además, no tiene caso secar más allá de la humedad de equilibrio, ya que el material tendría a recuperar humedad hasta que se estabilice con la atmósfera que la rodea. Por lo anterior, se concluye que la humedad óptima de salida es la humedad de equilibrio del material con la atmósfera donde se va a almacenar. Es muy importante recordar que la humedad de equilibrio de un material varía de acuerdo a las condiciones atmosféricas que lo rodean, en especial de la humedad relativa y de la temperatura de bulbo seco.
                          Flujo de Aire
 La optimización del flujo requerido de aire es importante, ya que es el aire en contacto con el producto el encargado de extraer su humedad. La temperatura inicial de la corriente de aire desciende conforme avanza en el secador. A lo largo de su recorrido en el secador el aire aumenta su humedad relativa. Para un proceso de secado ideal, esta humedad relativa debe llegar a ser lo más próxima posible a la humedad de saturación. En un proceso eficiente y dado que la circulación de aire lleva un costo, es necesario determinar el flujo másico de aire óptimo para secar el producto en el menor tiempo posible, el cual va a depender de la naturaleza del producto, tipo de secador, etc. Si se conocen las temperaturas existentes en diversos puntos del secador, se puede determinar aproximadamente qué tan correctamente está trabajando la corriente de aire de entrada. La corriente de aire óptima para el secado será alcanzada cuando, en el punto final del secador, la humedad del aire sea cercana a la humedad de saturación; esto sucederá cuando la temperatura en la salida del secador sea igual a la temperatura de bulbo húmedo correspondiente a las condiciones de la temperatura del flujo de aire y de humedad iniciales en la entrada del secador. 
                   

jueves, 13 de septiembre de 2012

Impacto ambiental

Todas las fuentes de energía producen algún grado de impacto ambiental. La energía geotérmica puede ser muy nociva si se arrastran metales pesados y gases de efecto invernadero a la superficie; la eólica produce impacto visual en el paisaje, ruido de baja frecuencia, puede ser una trampa para aves. La hidráulica menos agresiva es la minihidráulica ya que las grandes presas provocan pérdida de biodiversidad, generan metano por la materia vegetal no retirada, provocan pandemias como fiebre amarilla, dengue, equistosomiasis en particular en climas templados y climas cálidos, inundan zonas con patrimonio cultural o paisajístico, generan el movimiento de poblaciones completas, entre otros Asuán, Itaipú, Yaciretá y aumentan la salinidad de los cauces fluviales. La energía solar se encuentra entre las menos agresivas salvo el debate generado por la electricidad fotovoltaica respecto a que se utiliza gran cantidad de energía para producir los paneles fotovoltáicos y tarda bastante tiempo en amortizarse esa cantidad de energía. La mareomotriz se ha discontinuado por los altísimos costos iniciales y el impacto ambiental que suponen. La energía de las olas junto con la energía de las corrientes marinas habitualmente tienen bajo impacto ambiental ya que usualmente se ubican en costas agrestes. La energía de la biomasa produce contaminación durante la combustión por emisión de CO2 pero que es reabsorbida por el crecimiento de las plantas cultivadas y necesita tierras cultivables para su desarrollo, disminuyendo la cantidad de tierras cultivables disponibles para el consumo humano y para la ganadería, con un peligro de aumento del coste de los alimentos y aumentando la producción de monocultivos. Energía hidráulica La energía potencial acumulada en los saltos de agua puede ser transformada en energía eléctrica. Las centrales hidroeléctricas aprovechan la energía de los ríos para poner en funcionamiento unas turbinas que mueven un generador eléctrico. En España se utiliza un 15 % de esta energía para producir electricidad. Uno de los recursos más importantes cuantitativamente en la estructura de las energías renovables es la procedente de las instalaciones hidroeléctricas; una fuente energética limpia y autóctona pero para la que se necesita construir infraestructuras necesarias que permitan aprovechar el potencial disponible con un coste nulo de combustible. El problema de este tipo de energía es que depende de las condiciones climatológicas. Energía solar térmica Se trata de recoger la energía del sol a través de paneles solares y convertirla en calor el cual puede destinarse a satisfacer numerosas necesidades. Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien para dar calefacción a hogares, hoteles, colegios o fábricas. También, se podrá conseguir refrigeración durante las épocas cálidas. En agricultura se pueden conseguir otro tipo de aplicaciones como invernaderos solares que favorecieran las mejoras de las cosechas en calidad y cantidad, los secaderos agrícolas que consumen mucha menos energía si se combinan con un sistema solar, y plantas de purificación o desalinización de aguas sin consumir ningún tipo de combustible. Con este tipo de energía se podría reducir más del 25 % del consumo de energía convencional en viviendas de nueva construcción con la consiguiente reducción de quema de combustibles fósiles y deterioro ambiental. La obtención de agua caliente supone en torno al 28% del consumo de energía en las viviendas y que éstas, a su vez, demandan algo más del 12% de la energía en España.[cita requerida] Biomasa La formación de biomasa a partir de la energía solar se lleva a cabo por el proceso denominado fotosíntesis vegetal que a su vez es desencadenante de la cadena biológica. Mediante la fotosíntesis las plantas que contienen clorofila, transforman el dióxido de carbono y el agua de productos minerales sin valor energético, en materiales orgánicos con alto contenido energético y a su vez sirven de alimento a otros seres vivos. La biomasa mediante estos procesos almacena a corto plazo la energía solar en forma de carbono. La energía almacenada en el proceso fotosintético puede ser posteriormente transformada en energía térmica, eléctrica o carburantes de origen vegetal, liberando de nuevo el dióxido de carbono almacenado. Energía Solar La energía solar es una fuente de vida y origen de la mayoría de las demás formas de energía en la Tierra. Cada año la radiación solar aporta a la Tierra la energía equivalente a varios miles de veces la cantidad de energía que consume la humanidad. Recogiendo de forma adecuada la radiación solar, esta puede transformarse en otras formas de energía como energía térmica o energía eléctrica utilizando paneles solares. Mediante colectores solares, la energía solar puede transformarse en energía térmica, y utilizando paneles fotovoltaicos la energía luminosa puede transformarse en energía eléctrica. Ambos procesos nada tienen que ver entre sí en cuanto a su tecnología. Así mismo, en las centrales térmicas solares se utiliza la energía térmica de los colectores solares para generar electricidad. Se distinguen dos componentes en la radiación solar: la radiación directa y la radiación difusa. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes, y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas direcciones. Sin embargo, tanto la radiación directa como la radiación difusa son aprovechables. Se puede diferenciar entre receptores activos y pasivos en que los primeros utilizan mecanismos para orientar el sistema receptor hacia el Sol -llamados seguidores- y captar mejor la radiación directa. Una importante ventaja de la energía solar es que permite la generación de energía en el mismo lugar de consumo mediante la integración arquitectónica. Así, podemos dar lugar a sistemas de generación distribuida en los que se eliminen casi por completo las pérdidas relacionadas con el transporte -que en la actualidad suponen aproximadamente el 40% del total- y la dependencia energética. Las diferentes tecnologías fotovoltaicas se adaptan para sacar el máximo rendimiento posible de la energía que recibimos del sol. De esta forma por ejemplo los sistemas de concentración solar fotovoltaica (CPV por sus siglas en inglés) utiliza la radiación directa con receptores activos para maximizar la producción de energía y conseguir así un coste menor por kWh producido. Esta tecnología resulta muy eficiente para lugares de alta radiación solar, pero actualmente no puede competir en precio en localizaciones de baja radiación solar como Centro Europa, donde tecnologías como la Capa Fina (Thin Film) están consiguiendo reducir también el precio de la tecnología fotovoltaica tradicional. Energía eólica La energía eólica es la energía obtenida de la fuerza del viento, es decir, mediante la utilización de la energía cinética generada por las corrientes de aire.Se obtiene a través de una turbinas eólicas son las que convierten la energía cinética del viento en electricidad por medio de aspas o hélices que hacen girar un eje central conectado, a través de una serie engranajes (la transmisión) a un generador eléctrico. El término eólico viene del latín Aeolicus(griego antiguo Αἴολος / Aiolos), perteneciente o relativo a Éolo o Eolo, dios de los vientos en la mitología griega y, por tanto, perteneciente o relativo al viento. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas. Es un tipo de energía verde. La energía del viento está relacionada con el movimiento de las masas de aire que desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales(gradiente de presión). Por lo que puede decirse que la energía eólica es una forma no-directa de energía solar,las diferentes temperaturas y presiones en la atmósfera, provocadas por la absorción de la radiación solar, son las que ponen al viento en movimiento. El aerogenerador es un generador de corriente eléctrica a partir de la energía cinética del viento, es una energía limpia y también la menos costosa de producir, lo que explica el fuerte entusiasmo por esta tecnología. Actualmente se utiliza para su transformación en energía eléctrica a través de la instalación de aerogeneradores o turbinas de viento. De entre todas las aplicaciones existentes de la energía eólica, la más extendida, y la que cuenta con un mayor crecimiento es la de los parques eólicos para producción eléctrica. Un parque eólico es la instalación integrada de un conjunto de aerogeneradores interconectados eléctricamente. Los aerogeneradores son los elementos claves de la instalación de los parques eólicos que, básicamente, son la evolución de los tradicionales molinos de viento. Como tales son máquinas rotativas que están formadas por tres aspas, de unos 20-25 metros, unidas a un eje común. El elemento de captación o rotor que está unido a este eje, capta la energía del viento. Mediante el movimiento de las aspas o paletas, accionadas por el viento, activa un generador eléctrico que convierte la energía mecánica de la rotación en energía eléctrica. Estos aerogeneradores suelen medir unos 40-50 metros dependiendo de la orografía del lugar, pero pueden ser incluso más altos. Este es uno de los grandes problemas que afecta a las poblaciones desde el punto de vista estético. Los aerogeneradores pueden trabajar solos o en parques eólicos, sobre tierra formando las granjas eólicas, sobre la costa del mar o incluso pueden ser instalados sobre las aguas a cierta distancia de la costa en lo que se llama granja eólica marina, la cual está generando grandes conflictos en todas aquellas costas en las que se pretende construir parques eólicos. El gran beneficio medioambiental que reporta el aprovechamiento del viento para la generación de energía eléctrica viene dado, en primer lugar, por los niveles de emisiones gaseosas evitados, en comparación con los producidos en centrales térmicas. En definitiva, contribuye a la estabilidad climática del planeta. Un desarrollo importante de la energía eléctrica de origen eólico puede ser, por tanto, una de las medidas más eficaces para evitar el efecto invernadero ya que, a nivel mundial, se considera que el sector eléctrico es responsable del 29% de las emisiones de CO2 del planeta.[cita requerida] Como energía renovable que es contribuye minimizar el calentamiento global. Si nos centramos en las ventajas sociales y económicas que nos incumben de una manera mucho más directa son mayores que los beneficios que nos aportan las energías convencionales. El desarrollo de este tipo de energía puede reforzar la competitividad general de la industria y tener efectos positivos y tangibles en el desarrollo regional, la cohesión económica y social, y el empleo. La industria eólica es un sector con indudable futuro. Las repercusiones que en materia de empleo está teniendo y va a tener esta dinámica inversión son sin duda importantes. Este despliegue de la energía eólica puede ser una característica clave del desarrollo regional con el objetivo de dar lugar a una mayor cohesión social y económica. Los fondos invertidos a escala regional en el desarrollo de las fuentes de energía renovables pueden contribuir a elevar los niveles de vida y de renta de las regiones menos favorecidas o en declive mediante la utilización de recursos locales, generando empleos permanentes a nivel local y creando nuevas oportunidades para la agricultura. Las energías renovables contribuyen de esta forma al desarrollo de las regiones menos favorecidas, cuyos recursos naturales encuentran así una oportunidad. La energía eólica supone una evidente contribución al autoabastecimiento energético. A pesar de que las ventajas medioambientales de la energía eólica son incuestionables, y de que existe un amplio consenso en nuestra sociedad sobre el alto grado de compatibilidad entre las instalaciones eólicas y el respeto por el medio ambiente, son muchos los que consideran que la instalación concreta de un parque eólico puede producir impactos ambientales negativos, que dependerán del emplazamiento elegido. Aunque muchas de ellas se encuentran en emplazamientos reservados. Hay quienes consideran que la eólica no supone una alternativa a las fuentes de energía actuales, ya que no genera energía constantemente pro falta o exceso de viento. Es la intermitencia uno de sus principales inconvenientes. El impacto en detrimento de la calidad del paisaje, los efectos sobre la avifauna y el ruido, suelen ser los efectos negativos que generalmente se citan como inconvenientes medioambientales de los parques eólicos. Con respecto a los efectos sobre la avifauna el impacto de los aerogeneradores no es tan importante como pudiera parecer en un principio. Otro de los mayores inconvenientes es el efecto pantalla que limita de manera notable la visibilidad y posibilidades de control que constituye la razón de ser de sus respectivos emplazamientos, consecuencia de la alienación de los aerogeneradores. A las limitaciones visuales se añaden las previsibles interferencias electromagnéticas en los sistemas de comunicación. Energía geotérmica La energía geotérmica es aquella energía que puede ser obtenida por el hombre mediante el aprovechamiento del calor del interior de la Tierra. Parte del calor interno de la Tierra (5.000 °C) llega a la corteza terrestre. En algunas zonas del planeta, cerca de la superficie, las aguas subterráneas pueden alcanzar temperaturas de ebullición, y, por tanto, servir para accionar turbinas eléctricas o para calentar. El calor del interior de la Tierra se debe a varios factores, entre los que destacan el gradiente geotérmico y el calor radiogénico. Geotérmico viene del griego geo, "Tierra"; y de thermos, "calor"; literalmente "calor de la Tierra". Energía Marina La energía marina o energía de los mares (también denominada a veces energía de los océanos o energía oceánica) se refiere a la energía renovable producida por las olas del mar, las mareas, la salinidad y las diferencias de temperatura del océano. El movimiento del agua en los océanos del mundo crea un vasto almacén de energía cinética o energía en movimiento. Esta energía se puede aprovechar para generar electricidad que alimente las casas, el transporte y la industria. Los principales tipos son:2 Energía de las olas, olamotriz o undimotriz. Energía de las mareas o energía mareomotriz. Energía de las corrientes: consiste en el aprovechamiento de la energía cinética contenida en las corrientes marinas. El proceso de captación se basa en convertidores de energía cinética similares a los aerogeneradores empleando en este caso instalaciones submarinas para corrientes de agua. Maremotérmica: se fundamenta en el aprovechamiento de la energía térmica del mar basado en la diferencia de temperaturas entre la superficie del mar y las aguas profundas. El aprovechamiento de este tipo de energía requiere que el gradiente térmico sea de al menos 20º. Las plantas maremotérmicas transforman la energía térmica en energía eléctrica utilizando el ciclo termodinámico denominado “ciclo de Rankine” para producir energía eléctrica cuyo foco caliente es el agua de la superficie del mar y el foco frío el agua de las profundidades. Energía osmótica: es la energía de los gradientes de salinidad.

Las fuentes de energía

Las fuentes de energía se pueden dividir en dos grandes subgrupos: permanentes (renovables) y temporales (no renovables). No renovables Los combustibles fósiles son recursos no renovables: no podemos reponer lo que gastamos. En algún momento se acabarán, y tal vez sean necesarios millones de años para contar nuevamente con ellos. Son aquellas cuyas reservas son limitadas y se agotan con el uso. Las principales son la energía nuclear y los combustibles fósiles (el petróleo, el gas natural y el carbón). Energía fósil Artículo principal: Calentamiento global. Los combustibles fósiles se pueden utilizar en forma sólida (carbón), líquida (petróleo) o gaseosa (gas natural). Son acumulaciones de seres vivos que vivieron hace millones de años y que se han fosilizado formando carbón o hidrocarburos. En el caso del carbón se trata de bosques de zonas pantanosas, y en el caso del petróleo y el gas natural de grandes masas de plancton marino acumuladas en el fondo del mar. En ambos casos la materia orgánica se descompuso parcialmente por falta de oxígeno y acción de la temperatura, la presión y determinadas bacterias de forma que quedaron almacenadas moléculas con enlaces de alta energía. La energía más utilizada en el mundo es la energía fósil. Si se considera todo lo que está en juego, es de suma importancia medir con exactitud las reservas de combustibles fósiles del planeta. Se distinguen las “reservas identificadas” aunque no estén explotadas, y las “reservas probables”, que se podrían descubrir con las tecnologías futuras. Según los cálculos, el planeta puede suministrar energía durante 40 años más (si sólo se utiliza el petróleo) y más de 200 (si se sigue utilizando el carbón). Hay alternativas actualmente en estudio: la energía fisil –nuclear y no renovable-, las energías renovables, las pilas de hidrógeno o la fusión nuclear. Energía nuclear Artículo principal: Energía nuclear. El núcleo atómico de elementos pesados como el uranio, puede ser desintegrado (fisión nuclear) y liberar energía radiante y cinética. Las centrales termonucleares aprovechan esta energía para producir electricidad mediante turbinas de vapor de agua. Se obtiene al romper los átomos de minerales radiactivos en reacciones en cadena que se producen en el interior de un reactor nuclear. Una consecuencia de la actividad de producción de este tipo de energía, son los residuos nucleares, que pueden tardar miles de años en desaparecer y tardan mucho tiempo en perder la radiactividad Renovables o verdes Energía verde es un término que describe la energía generada a partir de fuentes de energía primaria respetuosas con el medio ambiente. Las energías verdes son energías renovables que no contaminan, es decir, cuyo modo de obtención o uso no emite subproductos que puedan incidir negativamente en el medio ambiente. Actualmente, están cobrando mayor importancia a causa del agravamiento del efecto invernadero y el consecuente calentamiento global, acompañado por una mayor toma de conciencia a nivel internacional con respecto a dicho problema. Asimismo, economías nacionales que no poseen o agotaron sus fuentes de energía tradicionales (como el petróleo o el gas) y necesitan adquirir esos recursos de otras economías, buscan evitar dicha dependencia energética, así como el negativo en su balanza comercial que esa adquisición representa.

Clasificación

Las fuentes renovables de energía pueden dividirse en dos categorías: no contaminantes o limpias y contaminantes. Entre las primeras: La llegada de masas de agua dulce a masas de agua salada: energía azul. El viento: energía eólica. El calor de la Tierra: energía geotérmica. Los ríos y corrientes de agua dulce: energía hidráulica o hidroeléctrica. Los mares y océanos: energía mareomotriz. El Sol: energía solar. Las olas: energía undimotriz. Las contaminantes se obtienen a partir de la materia orgánica o biomasa, y se pueden utilizar directamente como combustible (madera u otra materia vegetal sólida), bien convertida en bioetanol o biogás mediante procesos de fermentación orgánica o en biodiésel, mediante reacciones de transesterificación y de los residuos urbanos. Las energías de fuentes renovables contaminantes tienen el mismo problema que la energía producida por combustibles fósiles: en la combustión emiten dióxido de carbono, gas de efecto invernadero, y a menudo son aún más contaminantes puesto que la combustión no es tan limpia, emitiendo hollines y otras partículas sólidas. Se encuadran dentro de las energías renovables porque mientras puedan cultivarse los vegetales que las producen, no se agotarán. También se consideran más limpias que sus equivalentes fósiles, porque teóricamente el dióxido de carbono emitido en la combustión ha sido previamente absorbido al transformarse en materia orgánica mediante fotosíntesis. En realidad no es equivalente la cantidad absorbida previamente con la emitida en la combustión, porque en los procesos de siembra, recolección, tratamiento y transformación, también se consume energía, con sus correspondientes emisiones.

Energía alternativa

Un concepto similar, pero no idéntico es del de las energías alternativas: una energía alternativa, o más precisamente una fuente de energía alternativa es aquella que puede suplir a las energías o fuentes energéticas actuales, ya sea por su menor efecto contaminante, o fundamentalmente por su posibilidad de renovación. Según esta definición, algunos autores incluyen la energía nuclear dentro de las energías alternativas, ya que generan muy pocos gases de efecto invernadero. El consumo de energía es uno de los grandes medidores del progreso y bienestar de una sociedad. El concepto de "crisis energética" aparece cuando las fuentes de energía de las que se abastece la sociedad se agotan. Un modelo económico como el actual, cuyo funcionamiento depende de un continuo crecimiento, exige también una demanda igualmente creciente de energía. Puesto que las fuentes de energía fósil y nuclear son finitas, es inevitable que en un determinado momento la demanda no pueda ser abastecida y todo el sistema colapse, salvo que se descubran y desarrollen otros nuevos métodos para obtener energía: éstas serían las energías alternativas.

Energía renovable

Se denomina energía renovable a la energía que se obtiene de fuentes naturales virtualmente inagotables, ya sea por la inmensa cantidad de energía que contienen, o porque son capaces de regenerarse por medios naturales.1 Entre las energías renovables se cuentan la eólica, geotérmica, hidroeléctrica, maremotriz, solar, undimotriz, la biomasa y los biocombustibles.